MIGSの予後は予測可能かMinimallyInvasiveGlaucomaSurgery:ApproachesforPredictingOutcomes成田亜希子*はじめに低侵襲緑内障手術(minimallyinvasiveglaucomasur-gery:MIGS)は,緑内障治療において重要な役割を果たしている.当初は,点眼アドヒアランスが不良であったり,薬剤毒性などで緑内障点眼治療ができない初期から中期の緑内障患者に点眼治療に代わる選択肢として認識されていたが,有効性と安全性が報告され,さらに種類が増えたことから適応が拡大した.現在,日本で承認されているMIGSはすべて房水主流出路がターゲットで,最大房水流出抵抗部位である傍Schlemm管結合組織とSchlemm管内壁の流出抵抗を軽減させるのが目的である.現時点で日本で施行されているMIGSのデバイスを図1に示した1).しかし,房水主流出路をターゲットとするMIGSには限界がある.上強膜静脈圧レベルまで眼圧を下降させることは困難であり,目標眼圧が低い症例には適さない.また,術前に非常に高い眼圧が持続していた症例には十分な効果を得られないことが多い.治療効果はSchlemm管とそれ以降の房水流出路に依存し,病型や術前眼圧が同じであっても患者によって効果に差があることをしばしば経験する.個々の患者に最適なMIGSの選択,最大の効果を得るための手術部位の選択,そしてMIGSの予後予測は可能か,といった疑問から,房水流出力学への関心が高まり,MIGSの予後を予測する方法についての研究がなされてきた.本稿では,まず房水流出に関する解剖生理について解説し,さらにMIGSの予後を予測する試みを紹介する.I房水流出に関する解剖生理MIGSによる眼圧下降を理解するためには,まず正常の房水流出路に関する解剖生理と緑内障における変化を理解する必要がある.房水主流出路は,おもに線維柱帯,傍Schlemm管結合組織,Schlemm管,集合管,房水静脈で構成されている.1.線維柱帯,傍Schlemm管結合組織最大の房水流出抵抗は傍Schlemm管結合組織に存在し,Schlemm管内壁によって調節されていると考えられている2).細胞外マトリックス(extracellularmatrix:ECM)の産生と分解のバランスが房水流出抵抗や眼圧の制御に重要な役割を果たしている3).無治療の原発開放隅角緑内障眼で,傍Schlemm管結合組織にECMの異常な蓄積がみられたと報告されていることから,ECMの蓄積が初期の病態生理学的変化であると考えられる4).ECMの異常な蓄積により,線維柱帯は薄く,硬くなり,柔軟性,可動性も低下する5).摘出人眼を用いた実験で,トラベクロトミーで全周切開した場合,灌流圧7mmHg(摘出眼の正常眼圧)で49%の房水流出抵抗が除去され,灌流圧25mmHgでは71%が除去されたと報告された6,7).このことから,線維柱帯とSchlemm管では,房水流出抵抗が圧依存性に変化することが示唆された.また,エキシマレーザーで*AkikoNarita:岡山済生会総合病院眼科〔別刷請求先〕成田亜希子:〒700-8511岡山市北区国体町2-25岡山済生会総合病院眼科0910-1810/20/\100/頁/JCOPY(77)1253abd図1日本で用いられているMIGSのデバイスa:トラベクトーム(画像提供元:興和).b:iStentトラベキュラーマイクロバイパスステント(画像提供元:グラウコス・ジャパン).c:KahookDualBlade(画像提供元:JFCセールスプラン).d:谷戸式abinternoトラベクロトミーマイクロフック(画像提供元:イナミ).e:Suturetrabeculotomyabinterno(文献1より改変引用)b図2線維柱帯以降の房水流出路のシェーマ(a)と集合管の分布(三次元マイクロコンピュータ断層画像,b)a:房水は,集合管から深部強膜静脈叢,強膜内静脈叢と呼ばれる屈曲蛇行した通過システムを経由し,上強膜静脈に流入するか,あるいは集合管から房水静脈を経由して上強膜静脈に合流する(文献9より改変引用).b:約30本の集合管はSchlemm管に沿ってランダムに分布し,鼻下側象限にもっとも多く,次に耳上側象限に多い(文献10より改変引用).Schlemm管外壁と強膜から1clockhourの範囲の組織を切除した場合,10mmHgの灌流圧で35%の房水流出抵抗が除去されたと報告された8).これらの研究から,房水流出抵抗の1/3.1/2はSchlemm管内壁以降に存在することが示唆された.2.Schlemm管Schlemm管の管腔は直接静脈系に接続している9)(図2a).通常Schlemm管内に血液はみられず,眼圧が上強膜静脈圧以下に下降するか,フランジ付きの隅角鏡で角膜縁の血管を圧迫した際に血液の逆流を認める(図7).Schlemm管の断面は楕円形で,Schlemm管の内壁は傍Schlemm管結合組織に,外壁は強膜に隣接している.3.集合管約30本の集合管はSchlemm管に沿ってランダムに分布し,鼻下側象限にもっとも多く,次に多いのが耳上側象限である10)(図2b).房水は,集合管から深部強膜静脈叢,強膜内静脈叢といった屈曲蛇行した血管を経由して上強膜静脈に流入するか,あるいは房水静脈を経由して直接上強膜静脈に合流する(図2a).4.房水静脈房水静脈は集合管と直接接続していて,深部強膜静脈叢,強膜内静脈叢を迂回して上強膜静脈に合流する(図2a).房水静脈の起始部では,集合管からの透明な房水で内腔が満たされているが,上強膜静脈に合流すると血液を含むようになる.合流点付近では内腔の中央に透明な房水のゾーンがあり,両側を血液のゾーンで囲まれている血管を結膜表層に認める(図10a).眼圧の変動により,合流点での房水と血液の割合は変化する.これらの変化を直接観察することで,眼圧下降を目的とした薬剤や手術の効果を評価できる11).細隙灯顕微鏡検査で通常2.3本,最大6本の房水静脈が観察できる.分布は不均等で,鼻下側象限にもっとも多く認められる.房水静脈には,房水流出を促進する「拍動性のフロー」により動的な均衡が存在する.拍動性のフローは,心拍動や瞬目,そして傍Schlemm管結合組織,Sch-lemm管内壁からSchlemm管への流入路と,集合管,房水静脈を経由する流出路によって生じる周期性の圧縮力から起こる.緑内障患者では,正常者に比べ拍動性のフローが減少する12,13).これは線維柱帯の弾性の生理学的変化により説明でき,房水が前房からSchlemm管へ流れるためには線維柱帯が動的な圧力や房水の流入,流出による容積変化に対して変形可能でなければならないが,緑内障患者では線維柱帯の弾性が低下しているためと考えられている.5.房水流出パターン房水流出は周方向に不均一でセグメンタルであり14)(図3a),鼻下象限には集合管,房水静脈がもっとも多く分布し,房水流出が最大となる.共焦点顕微鏡を用いた研究では,集合管開口部に隣接した線維柱帯にトレーサーが強く集積し,優先的な流出路の存在が示唆され14,15)(図3b),その領域の色素が濃いことから,線維柱帯の色素は活発なフローを有する部位を同定するマーカーとなるかもしれない.6.眼圧上昇によるSchlemm管の虚脱と線維柱帯の集合管開口部への嵌頓摘出人眼を光学顕微鏡で観察した研究において,正常眼の眼圧を急激に上昇させると,Schlemm管が虚脱し,線維柱帯組織が集合管の開口部に嵌頓して集合管開口部が閉塞し,房水流出が低下するが,眼圧を下降させると正常化し,これらの変化が可逆性であることが示された16,17)(図4a).原発開放隅角緑内障(primaryopenangleglaucoma:POAG)患者では,正常眼に比べSch-lemm管の虚脱や集合管開口部の閉塞が多く認められ,眼圧を0mmHgまで下降させてもそれらの所見に変化がなかったと報告された.このことから,高眼圧が長期間持続すると,Schlemm管の虚脱や集合管開口部の閉塞が不可逆性となる可能性が示唆された17,18)(図4b).IIMIGSの予後予測に関する研究さまざまな方法で房水主流出路の可視化,機能評価が試みられてきた.前眼部光干渉断層計(opticalcoherencetomogra-phy:OCT),前眼部OCTアンギオグラフィー(OCT(79)あたらしい眼科Vol.37,No.10,20201255図3正常眼のセグメンタルな房水流出パターン(a,b)と正常眼の共焦点顕微鏡画像(c,d)a:Schlemm管内のトレーサーの分布から,房水流出は周方向に不均一でセグメンタルであることがわかる.b:トレーサーのセグメンタルな分布は強膜静脈にも認められた.c:集合管開口部に近い線維柱帯にトレーサーが強く集積し,優先的な流出路の存在が示唆された.d:集合管開口部が近くにない領域の線維柱帯には,トレーサーの集積を認めなかった.CC:集合管,SC:Schlemm管,TM:線維柱帯.(文献17より改変引用).-正常眼正常眼POAG眼図4正常眼における集合管開口部の光学顕微鏡像(a~c)と正常眼と緑内障眼の集合管開口部の光学顕微鏡像の比較(d,e)a:急激に眼圧を上昇させ45mmHgで維持すると,Schlemm管は虚脱し,線維柱帯の嵌頓により集合管開口部が閉塞した.b:最初眼圧を45mmHgまで上昇させ,その後7mmHgまで下降させると,aでみられた線維柱帯の集合管開口部への嵌頓は解除され,線維柱帯の変形だけが残った.Schlemm管の幅は,眼圧を45mmHgで維持した場合より広かった.c:眼圧を7mmHgで維持した場合,Schlemm管は開放し,集合管開口部に嵌頓を認めなかった.d:正常眼:Schlemm管は開放し,集合管開口部に嵌頓を認めなかった.e:POAG眼:集合管開口部に隣接したSchlemm管は虚脱し,内壁と外壁が部分的に癒着していた.さらに,Schlemm管内壁と傍Schlemm管結合組織が集合管開口部に嵌頓していた.(文献11より改変引用)POAG:原発開放隅角緑内障,CC:集合管,SC:Schlemm管,TM:線維柱帯.a図5OCTを用いた房水流出路の可視化a:enhanced-depthimagingOCTによる集合管の微細構造のバリエーション.白矢印:集合管(文献C30より改変引用).Cb,c:トラベクトーム手術後CSS-OCT画像.Cb:トラベクトーム術後に,前眼部COCTを用いて観察し,線維柱帯,Schlemm管内壁が除去されている()のを確認した.Cc:術後の脈絡膜.離()の発症を確認できた.前眼部OCTA画像(深層)ab表層深層房水流出路造影画像図6前眼部OCTAを用いた強結膜血流の可視化a:前眼部COCTA画像(全体像).強結膜の表層と深層の血管構築を層別に解析することが可能.Cb:深層の前眼部COCTA画像と房水流出路造影画像との比較.同一症例の比較ではないが,両者が類似していることが示された.*角膜(文献C31より改変引用)グレード1グレード2グレード3図7Schlemm管内の血液逆流の評価(provocativegonioscopy)術中に眼圧を上強膜静脈圧以下に下降させることで,前毛様体静脈から集合管を経由して血液をCSchlemm管内に逆流させ,逆流の程度を隅角鏡で観察しながら評価し,3群に分類した(グレードC1:Schlemm管に血液逆流なし,グレード2:不完全な血液逆流,グレード3:完全な血液逆流).(文献C33より改変引用)図8Episcleralvenous.uidwave(EVFW)a:前房内灌流前.b:前房内灌流後.トラベクトーム手術で線維柱帯とCSchlemm管内壁を除去した後に,前房内を灌流して前房内圧を上昇させ,上強膜静脈内の血液がウオッシュアウトされて強膜が白色化する現象(EVFW).EVFWの範囲,程度はともに,術後C3カ月までの眼圧と相関を認めた.(文献C36より改変引用)iStentinject挿入前iStentinject挿入後abcd図9房水流出路造影a:フルオレセインを用いた房水流出路造影.上方,下方,鼻側,耳側の造影パターン(左眼).セグメンタルな房水流出パターンを認めた(文献C39より改変引用).b~d:MIGS施行前後の造影効果の比較.iStentinject挿入前にインドシアニングリーンを用いて造影,挿入後にフルオレセインを用いて造影を行い,以下のC3パターンがあることを示した(文献C41より改変引用).b:術前造影されなかった房水流出路に術後造影効果が認められ,房水流出路が開通したことが確認されたパターン.Cc:既存の房水流出路の流速,流量が術後に増加したパターン.Cd:術前後とも造影効果が認められなかったパターン.:iStentinject挿入部位.:造影信号を認めた領域.:造影信号を認めなかった領域.:造影信号を認めた鼻側領域.abintensityoftransmittedlight(computermodel)図10ヘモグロビンビデオイメージングによる房水動態の観察a:ヘモグロビンの吸収スペクトルを用いて赤血球とその周囲とのコントラストを増強させ,明るい背景に対し赤血球は暗い対象物として表示される.房水が暗い静脈内で白く抜けて見える(房水カラム).:上強膜静脈内の房水カラム.b:房水静脈との合流点の上流で,上強膜静脈断面の房水カラム径(Cd)を測定した.(文献C44より改変引用)C’C4)RohenCJW,CLutjen-DrecollCE,CFlugelCCCetal:Ultrastruc-tureCofCtheCtrabecularCmeshworkCinCuntreatedCcasesCofCpri-maryopen-angleCglaucoma(POAG)C.CExpCEyeCResC56:683-692,C19935)CarreonT,vanderMerweE,FellmanRLetal:Aqueousout.owC-aCcontinuumCfromCtrabecularCmeshworkCtoCepi-scleralveins.ProgRetinEyeResC57:108-133,C20176)RosenquistR,EpsteinD,MelamedSetal:Out.owresis-tanceofenucleatedhumaneyesattwodi.erentperfusionpressuresCandCdi.erentCextentsCofCtrabeculotomy.CCurrCEyeRes8:1233-1240,C198977)GrantWM:ExperimentalCaqueousCperfusionCinCenucleat-edhumaneyes.ArchOphthalmol69:783-801,C19638)SchumanJS,ChangW,Wangetal:Excimerlasere.ectsonCout.owCfacilityCandCout.owCpathwayCmorphology.CInvestOphthalmolVisSciC40:1676-1680,C19999)GongCH,CFrancisA:SchlemmC’sCcanalCandCcollectorCchan-nelsCasCtherapeuticCtargets,CIn.CSurgicalCinnovationsCinglaucoma(SamplesJR,AhmedI,eds)C.p10,Springer,NewYork,201410)HannCCR,CBentleyCMD,CVercnockeCACetal:ImagingCtheCaqueoushumorout.owpathwayinhumaneyesbythree-dimensionalmicro-computedtomography(3Dmicro-CT).ExpCEyeResC92:104-111,C201111)JohnstoneMA:TheCaqueousCout.owCsystemCasCaCmechanicalpump:evidenceCfromCexaminationCofCtissueCandCaqueousCmovementCinChumanCandCnon-humanCpri-mates.CJGlaucomaC13:421-438,C200412)KleinertH:Thevisible.owofaqueoushumorintheepi-bulbarCveins.CII.CTheCpulsatingCbloodCvesselsCofCtheCaque-oushumor.CAlbrechtVonGraefesArchOphthalmolC152:C587-608,C195213)KleinertH:TheCcompensationmaximum:aCnewCglauco-masigninaqueousveins.ArchCOphthalmolC46:618,C195114)GongCH,CFrancisA:SchlemmC’sCcanalCandCcollectorCchan-nelsCasCtherapeuticCtargets,CIn.CSurgicalCinnovationsCinglaucoma(SamplesJR,AhmedI,eds)C.p12,Springer,NewYork,201415)BattistaCSA,CLuCZ,CHofmannCSCetal:ReductionCofCtheCavailableareaforaqueoushumorout.owandincreaseinmeshworkCherniationsCintoCcollectorCchannelsCfollowingCacuteIOPelevationinbovineeyes.InvestOphthalmolVisSciC49:5346-5352,C200816)ZhuCJ,CGongH:MorphologicalCchangesCcontributingCtoCdecreasedout.owfacilityfollowingacuteIOPelevationinnormalChumanCeyes.CInvestCOphthalmolCVisCSciC49:1639,C200817)GongCH,CFrancisA:SchlemmC’sCcanalCandCcollectorCchan-nelsCasCtherapeuticCtargets,CIn.CSurgicalCinnovationsCinglaucoma(SamplesJR,AhmedI,eds)C.p17,Springer,NewYork,201418)GongCH,CFreddoCTF,CZhangY:NewCmorphologicalC.ndingsCinCprimaryCopen-angleCglaucoma.CInvestCOphthal-molVisSci48:2079,C200719)UjiA,MuraokaY,YoshimuraN:Invivoidenti.cationoftheposttrabecularaqueousout.owpathwayusingswept-sourceCopticalCcoherenceCtomography.CInvestCOphthalmolCVisSciC57:4162-4169,C201620)ChenZ,SunJ,LiMetal:E.ectofageonthemorpholo-giesCofCtheChumanCSchlemm’sCcanalCandCtrabecularCmesh-workCmeasuredCwithCswept-sourceCopticalCcoherencetomography.Eye(Lond)C32:1621-1628,C201821)LiCP,CButtCA,CChienCJLCetal:CharacteristicsCandCvaria-tionsCofCinCvivoCSchlemm’sCcanalCandCcollectorCchannelCmicrostructuresinenhanced-depthimagingopticalcoher-encetomography.BrJOphthalmol101:808-813,C201722)RenJ,GilleHK,WuJ,YangC:Exvivoopticalcoherencetomographyimagingofcollectorchannelswithascanningendoscopicprobe.InvestOphthalmolVisSciC6:52,C3921-3925,C201123)XinCC,CChenCX,CLiCMCetal:ImagingCcollectorCchannelCentranceCwithCaCnewCintraocularCmicro-probeCswept-sourceCopticalCcoherenceCtomography.CActaCOphthalmolC95:602-607,C201724)KagemannCL,CWangCB,CWollsteinCGCetal:IOPCelevationCreducesSchlemm’scanalcross-sectionalarea.InvestOph-thalmolVisSciC55:1805-1809,C201425)HongJ,XuJ,WeiAetal:Spectral-domainopticalcoher-enceCtomographicCassessmentCofCSchlemm’sCcanalCinCChi-neseCsubjectsCwithCprimaryCopen-angleCglaucoma.COph-thalmologyC120:709-715.C201326)SiebelmannS,CursiefenC,LappasAetal:Intraoperativeopticalcoherencetomographyenablesnoncontactimagingduringcanaloplasty.CJGlaucoma25:236-238,C201627)Paulaviciute-BaikstieneCD,CVaiciulieneCR,CJasinskasCVCetal:EvaluationCofCout.owCstructuresCinCvivoCafterCtheCphacocanaloplasty.CJOphthalmol2016:4519846,C201628)FuestCM,CKuertenCD,CKochCECetal:EvaluationCofCearlyCanatomicalCchangesCfollowingCcanaloplastyCwithCanteriorCsegmentCspectral-domainCopticalCcoherenceCtomographyCandCultrasoundCbiomicroscopy.CActaCOphthalmolC94:Ce287-e292,C201629)KuertenD,PlangeN,BeckerJetal:Evaluationoflong-termanatomicchangesfollowingcanaloplastywithanteri-orsegmentspectral-domainopticalcoherencetomographyCandCultrasoundCbiomicroscopy.CJGlaucomaC27:87-93,C201830)SkaletAH,LiY,LuCDetal:Opticalcoherencetomogra-phyCangiographyCcharacteristicsCofCirisCmelanocyticCtumors.OphthalmologyC124:197-204,C201731)AkagiCT,CUjiCA,CHuangCASCetal:ConjunctivalCandCintra-scleralvasculaturesassessedusinganteriorsegmentopti-calCcoherenceCtomographyCangiographyCinCnormalCeyes.CAmJOphthalmolC196:1-9,C201832)AkagiT,UjiA,OkamotoYetal:Anteriorsegmentopti-calCcoherenceCtomographyCangiographyCimagingCofCcon-(87)あたらしい眼科Vol.37,No.10,2020C1263